
Sourcecode: Example3.c

Sourcecode: Example3.c ii

COLLABORATORS

TITLE :

Sourcecode: Example3.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example3.c iii

Contents

1 Sourcecode: Example3.c 1

1.1 Example3.c . 1

Sourcecode: Example3.c 1 / 3

Chapter 1

Sourcecode: Example3.c

1.1 Example3.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Introduction Tulevagen 22 */
/* File: Example3.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-09-24 */
/* Version: 1.1 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* For experienced users only! This example demonstrates how */
/* to create a long word aligned BPTR. The actual BPTR (the */
/* memory used to store the BPTR address in) is long word */
/* aligned. This is rarely needed since you normally only */
/* work with addresses to data blocks which have to be long */
/* word aligned. However, if you ever have to give AmigaDOS */
/* an actual BPTR (not a BPTR address, but the BPTR itself) */
/* you need to allocate it as described in this example. */

/* Some advanced (and probably confusing) information about BCPL */
/* pointers: */
/* */
/* When you are working with AmigaDOS you will often use variables */
/* which have been declared as BPTRs (BPTR and BSTR are defined in */
/* header file "dos/dos.h"). What you have to remember is that */
/* these pointers must point to long word aligned data and must be */
/* in BPCL form (four times smaller than normal C pointers). */

Sourcecode: Example3.c 2 / 3

/* */
/* To decalre a BPTR simply write: */
/* */
/* BPTR my_bcpl_pointer; */
/* */
/* When you work with AmigaDOS you will often call functions, for */
/* example Open(), which will return a BPTR (a BPCL address). The */
/* memory which this returned BPCL pointer points to will have */
/* been allocated by the function itsef and will therefore be long */
/* word aligned. The address (value) in the BPTR will therefore */
/* point to long word aligned memory, and can be used with */
/* functions which requires BCPL pointers. */
/* */
/* Now comes the tricky part! The pointer itself (the memory used */
/* to store the address in) is NOT long word aligned when you */
/* declare it as described above. Normally this is not a problem */
/* since you usually only work with the address stored in the BPTR. */
/* However, if you ever would have to give AmigaDOS a BPCL pointer */
/* (not the address in the pointer, but the pointer itself) you */
/* must make sure that the actual pointer (the memory used to store */
/* the addresses in) is also long word aligned. */

/* Include the normal dos header file: */
#include <libraries/dos.h>

/* Include memory definitions: (MEMF_ANY...) */
#include <exec/memory.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */
#include <stdio.h> /* Std functions [printf()...] */
#include <stdlib.h> /* Std functions [exit()...] */

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/AmigaDOS/Example3 1.0";

/* Declared our own function(s): */
int main(int argc, char *argv[]);

/* The main function: */

int main(int argc, char *argv[])
{

/* Declare a normal C pointer to the */
/* BPTR pointer we will allocate: */
LONG *my_aligned_bptr;

Sourcecode: Example3.c 3 / 3

/* Allocate some memory for the aligned BPTR pointer: */
/* (The memory we allocate will be long word aligned. */
/* We allocate 4 bytes = 1 long.) */
my_aligned_bptr = AllocMem(sizeof(BPTR),

MEMF_ANY | MEMF_CLEAR);

/* Have we successfully allocated the memory? */
if(!my_aligned_bptr)
{

/* Not enough memory! Inform the user and quit: */
printf("Could not allocate enough memory!\n");

/* Exit with an error code: */
exit(20);

}

/* We have now allocated a long word aligned BPTR! */
/* Note that the "my_aligned_bptr" contains the C */
/* address of the aligned BPTR pointer! */

/* You can now use the long word aligned BPTR... */
printf("We can now use the long word aligned BPTR!\n");

/* Deallocate the long word aligned BPTR when you */
/* do not need it any more: */
FreeMem(my_aligned_bptr, sizeof(BPTR));

/* Remember that you may not use the memory any */
/* more after you have deallocated it! */
printf("The long word aligned BPTR has been deallocated!\n");

/* The End! */
exit(0);

}

	Sourcecode: Example3.c
	Example3.c

